Saturday, October 17, 2009

Flow lines

Flow lines can be defined as linear grooving, or circular ripples, on the surface of a molded part that indicate the direction of material flow within the cavity of the mold.

MACHINE INADEQUATE INJECTION PRESSURE
Explanation: If too little injection pressure is used, the molten plastic will tend to cool down and solidify before the mold is packed out. If no packing is achieved, the flow pattern of the material will be imprinted on the surface of the part because not enough pressure was used to force the plastic against the steel of the mold and squeeze out the flow lines. Solution: Increasing the injection pressure will force the molten plastic against the mold cavity steel before the plastic solidifies, removing the flow lines and duplicating the cavity finish.

INADEQUATE RESIDENCE TIME
Explanation: Residence time is the amount of time that the plastic material spends being exposed to heating conditions in the injection barrel. The required time depends upon how much heat the material must absorb to be processed properly. Inadequate residence time results in underheated material. This will cause the material to be stiff when injected and it will not flow enough to fill the cavity before solidifying. The flow patterns will be imprinted on the surface of the molded part because they were not forced out in time. Solution: Optimize the residence time by making sure the mold is sized to the proper machine. Also, optimize the cycle time to ensure the material residence time is adequate to properly melt the plastic.

LOW BARREL TEMPERATURES
Explanation: Low barrel temperatures have the same effect as short residence time. The plastic material does not become fluid enough to fill the mold before solidifying and flow lines are imprinted on the part surface before they can be forced away. Solution: Increase the barrel temperature to that recommended by the material supplier. Adjust as needed to eliminate the flow lines. And, remember to keep the profile set so the material is heated from the rear towards the front of the barrel.

LOW NOZZLE TEMPERATURE
Explanation: As material is transported through the heating barrel, it is gradually brought up to the ideal processing temperature by absorbing heat from the heating bands and frictional heat, which is created by the shearing action of the rotating screw within the barrel. In the last heating zone, the material is exposed to is the nozzle. By the time the material gets to the nozzle, it should already be at ideal molding temperature and only a small amount of heat needs to be applied at this point to keep the resin flowing. If the nozzle is not hot enough, however, the material will begin to cool off too quickly as it leaves the barrel and the flow front will not be forced against the cavity steel to squeeze out the flow lines. Solution: Increase the nozzle temperature. As a rule-of-thumb, the nozzle temperature should be set at 10 degrees F higher than the setting for the front zone of the barrel. This helps compensate for heat loss due to metal-to-metal contact between the nozzle and the sprue bushing, and keeps the material hot enough to pack the mold, eliminating flow lines.

INADEQUATE CYCLE TIME
Explanation: If the overall cycle time is too short there is a good possibility that the material in the barrel cannot absorb enough heat before it is injected into the mold. This will cause premature solidification and flow lines may appear because the plastic was not packed enough (before solidifying) to squeeze them out. Solution: Increase the cycle time. The easiest change to make is to add time to the cooling portion of the cycle. That is when the plastic is absorbing the most heat in the barrel. Increase barrel temperatures 10 degrees F at a time, allowing 10 cycles between changes to re-stabilize the process.

MOLD
LOW MOLD TEMPERATURE

Explanation: Generally, a hot mold will allow a material to stay molten longer than a cold mold and cause the molecules to pack together properly before they solidify. This results in a dense part with no flow lines. If the mold is too cold, the molecules solidify before they are packed out and flow lines may result. Solution: Increase the mold temperature to the point that the material has proper flow and packs out the mold. Start with the material suppliers recommendations and adjust accordingly. Allow 10 cycles for every 10-degree change for the process to re-stabilize.

IMPROPER VENTING
Explanation: If there is not enough venting in the mold, the material will push into unvented areas and not compress against the mold steel because trapped gases are in the way. The material will actually ``stutter'' as it tries to force the gas out of the way, and will eventually solidify before packing can be achieved. The stutter marks will imprint on the part surface as flow lines. Solution: Vent the mold by grinding thin (0.0005''-0.002'') pathways on the shutoff area of the cavity blocks. The viscosity of the plastic being molded determines the depth of the vent. Stiff materials can utilize deeper vents but fluid materials require thinner vents. In either case, the concept is to remove air from the mold as fast as possible with as deep a gate as the material viscosity will allow. At least 30% of the parting line perimeter should be vented, but additional vents can be selectively placed for any area where flow lines appear.

SMALL GATES AND/OR RUNNERS
Explanation: Gates and/or runners that are too small will cause excessive restriction to the flow of the molten plastic. Many plastics will then begin to solidify before they fill the cavity. The result is an unpacked condition of the molecules and flow lines will not have a chance to be pressed out of the product surface. Solution: Examine the gates and runners to determine if any burrs or other obstructions exist. If possible, perform a computer analysis to determine the proper sizing and location of gates and runners. Ask the material supplier for data concerning gate and runner dimensioning for a specific material and flow rate.

MATERIAL
IMPROPER FLOW RATE

Explanation: Resin manufacturers supply specific formulations in a range of standard flow rates. Thin-walled products may require an easy flow material while thick-walled products can use a material that has a stiffer consistency. It is better to use the stiffest flow possible because it improves physical properties of the molded part. However, the stiff material will require higher injection pressures, which may blow the mold open and cause flash at the parting line. If an easy flow material is used, the physical properties will not be as great but, in addition, the material will flow into very thin areas and could create flash where the stiffer materials would not. Solution: Utilize a material that has the stiffest flow possible without causing non-fill. Contact the material supplier for help in deciding which flow rate should be used for a specific application.

INADEQUATE MOLDING LUBRICANT
Explanation: If a material is too stiff, it may solidify before packing the cavity and flow lines could exist. A lubricant can be added to improve the flow. If this is an external lubricant such as a mold release agent, it is difficult to control the amount of lubricant being used and the material may more fluid than required. The result could be flashing where the material would not do so without lubricant. Solution: If it is determined that a lubricant must be used, have the material manufacturer (or a compounder) add it directly to the pellets. That will result in more uniform blending and all the material will have the same flow rate.

OPERATOR
INCONSISTENT PROCESS CYCLE

Explanation: It is possible that the machine operator is the cause of delayed or inconsistent cycles. This will result in erratic heating of the material in the injection barrel. If such a condition exists, the colder particles will require higher injection pressures and may not fill the mold before they fully solidify. Flow lines will not be forced out in time. Solution: If possible, operate the machine on automatic cycle, using the operator only to interrupt the cycle if an emergency occurs. Use a robot if an ``operator'' is really necessary. And, instruct all employees on the importance of maintaining consistent cycles.