Sunday, October 18, 2009

Blush

Blush can be defined as a clouded discoloration normally found at gate locations, but they can be found anywhere on the part surface. These visually defective areas have very weak physical properties due to loose molecular structure.

MACHINE
EXCESSIVE INJECTION FILL SPEED

Explanation: The speed and pressure of the melt as it enters the mold determine both density and consistency of melt in packing the mold. If the fill is too fast, the material tends to ``slip'' over the surface and will ``skin'' over before the rest of the material solidifies. The slipped skin area does not faithfully reproduce the mold steel surface, as does the material in other areas, because it has not been packed tightly against the steel. Solution: One solution is to adjust the fill speed rate until the optimum has been achieved. This will help eliminate blushing.

MELT TEMPERATURE TOO HIGH OR TOO LOW
Explanation: Although this may sound contradictory, either condition might cause blushing. If the injection barrel heat is too high, the material will flow too quickly, resulting in slippage of the surface skin, as mentioned above. If the barrel heat is too low, the material may solidify before full packing occurs and the plastic will not be pushed against the mold steel, especially in the gate area because that is the last area to pack. Solution: Melt temperature must be adjusted to the optimum for a specific material and specific product design.

LOW INJECTION PRESSURE
Explanation: The plastic material must be injected into the mold in such a way as to cause proper filling and packing while maintaining consistent solidification of the melt. Injection pressure is one of the main control variables of the machine and must be high enough to pack the plastic molecules against the steel of the mold while the plastic cools. Low pressure will not achieve this packing and the material will appear dull in local areas that do not have enough pressure. Solution: Increasing the injection pressure forces the material against the mold surface, producing a truer finish that replicates the steel finish.

NOZZLE DIAMETER TOO SMALL
Explanation: The nozzle diameter controls the time during which the material fills the mold. If the diameter is too small, the material may begin to solidify before the mold is filled. Then, packing cannot occur because the material is already rigid. Blush will occur because the plastic has not been forced against the steel surface. Solution: Enlarging the nozzle diameter will minimize the condition. The nozzle tip is interchangeable and a tip with the opening the same as, or slightly smaller than, the sprue bushing opening is recommended.

LOW NOZZLE TEMPERATURE
Explanation: A nozzle that has a low temperature will cause the material going through it to cool off too soon and not be allowed to pack out the mold. The non-packed molecules will form blush because they cannot replicate the steel finish. Solution: Increasing the mold temperature will allow the material to flow easier, and for a longer time, thereby packing the mold and replicating the steel finish. Normally, the nozzle temperature should be set the same as, or 10 degrees hotter than, the front zone of the barrel.

MOLD
LOW MOLD TEMPERATURE

Explanation: A low mold temperature may cause the molten material to slow down and solidify before the mold is packed out. This will cause dull areas where the plastic was not forced against the steel finish. Solution: Increasing the mold temperature allows the material to flow farther and pack properly. The material temperature could also be raised to accomplish the same effect.

IMPROPER VENTING
Explanation: Trapped air can cause blushing if the air is trapped in an area that does not compress the air enough to ignite it. The air takes up space where the plastic should be, so the plastic is not forced against the steel finish. Solution: Vent the mold by grinding thin (0.0005''-0.002'') pathways on the shutoff area of the cavity blocks. Vents should take up approximately 30% of the perimeter of the molded part. Add vents in local areas that show blush. Vent the runner, too. Any air that is trapped in the runner will be pushed into the part.

SMALL SPRUE BUSHING DIAMETER
Explanation: A small sprue-bushing diameter will keep the material from packing because the small opening reduces the ability of the plastic to flow far enough to fill the mold. An unpacked mold will cause blushing where the material is not forced against the mold steel. Solution: Size the sprue bushing major diameter so its cross-sectional area is equal to (or greater than) the sum of the cross-sectional area of all the runners leading from it. Then, taper the sprue diameter to match the nozzle. That will ensure proper pressure drop adjustments to pack the mold.

IMPROPER GATE LOCATION
Explanation: If a mold is gated such that the thinnest areas fill first, those areas will begin to solidify before the thicker areas are packed. Blush will form in the thicker areas because there is no pressure left to pack the plastic against the steel surface. Solution: Make sure the gate is located so the thicker sections fill first. The material should flow from thick section to thin section. That ensures equal packing of all areas.

SHARP CORNERS
Explanation: If the product design contains sharp corners, the material tends to slip by those corners without fill them in. The corners are not packed with material and blush occurs due to that non-packing. Solution: Radius all sharp corners, especially in the gate area, as that is the last place to pack. Sharp corners should not be allowed on any molded part.

MATERIAL
EXCESSIVE MOISTURE

Explanation: In some cases, excessive moisture in a melt will accumulate at the gate area. The reason for this is that the gate area is the last place the pressure builds up. Moisture trapped in other areas may be forced into the gate area due to this pressure buildup. The gate area will appear dull due to the moisture that gets screened out. Usually, this type of blush is accompanied by splay. Solution: Dry the material to the supplier's recommendations and make sure it is used within two hours of that drying activity.

OPERATOR
INCONSISTENT PROCESS CYCLE
Explanation: It is possible that the machine operator is the cause of delayed or inconsistent cycles. This will result in excessive residence time of the material in the injection barrel. If such a condition exists, materials may fill at a faster speed and cause slippage as explained earlier. Slippage causes blush. Solution: If possible, run the machine on automatic cycle, using the operator only to interrupt the cycle if an emergency occurs. Use a robot if an ``operator'' is really necessary. And, instruct all employees on the importance of maintaining consistent cycles.
[ ... ]

Contamination

Contamination can be defined as an imperfection in a molded part caused by the presence of a foreign object or material that is not part of the original molding compound.

MACHINE
OIL LEAKS AND GREASE DRIPS

Explanation: It is common for most molders to allow small oil leaks to become big ones before they consider repairing them. This oil can find its way into unusual locations, such as a container of raw plastic being prepared to go into the machine hopper. Also, when equipment is greased, it is usually overdone and grease drips can fall into material containers. These contaminants are not compatible with the base resin so they are very evident in the molded part. Solution: Fix oil leaks as quickly as possible. Clean up grease drips as they occur and do not use the same cleanup rags to wipe out the hopper between material changes.

UNCOVERED HOPPER
Explanation: When the molding machine is first built, it is supplied with a cover for the hopper. It is there to keep contaminants from getting to the molding compound. If that cover is not present during production runs, the material can be contaminated with such things as dust from the ceiling, drops of condensation from overhead waterlines, and even bird droppings in large facilities. Solution: Use the hopper lid. Do not improvise with flattened cardboard boxes, as the paper particles will cause contamination. If the original lid is lost buy a new one. They are designed to do a specific job well.

IMPROPERLY CLEANED HOPPER
Explanation: When a material change is required, the hopper must be cleaned out. It is not good enough to simply remove the material present. The sides of the hopper must be wiped to remove any material dust or ``fines'' that stick to the sides due to static charges. If not removed, these fines will get picked up by the new material and, because of incompatibility, will appear as contamination in the molded parts. Solution: Clean the hopper thoroughly between material changeovers. This may require wiping the inside with a cloth slightly dampened with denatured alcohol to remove all traces of fines.

MOLD
EXCESSIVE LUBRICATION

Explanation: Molds with cams, slides, lifters, and other mechanical actions need periodic lubrication. Sometimes there is a tendency to overdo this and the lubricant may find its way into the cavity of the mold. This is especially true for ejector pin lubricants. The oil-based lubricant is not compatible with the base resin and is evident as contamination on the molded parts. In addition, excessive mold release acts as a contaminant and appears on the molded part as blotches, dark spots, smears, and streaks. Solution: Optimize the use of lubricants and minimize the use of mold release sprays. Clean up any excess lubricants and use only the amount needed for a specific application. A little lubricant goes a very long way. Investigate the reason for using mold release. Usually it is a temporary approach to a more severe problem, and the problem should be solved to eliminate the need for the release agent.

MATERIAL
CONTAMINATED RAW MATERIAL

Explanation: The most common cause of contamination in molded parts is molding compound contamination. Such contamination is usually the result of dirty regrind, improperly cleaned hoppers or granulators, open or uncovered material containers, and poor quality virgin material supplied by the manufacturer. Solution: This type of contamination can be minimized by dealing with high quality, reputable suppliers and by using good housekeeping practices. Properly trained material handlers will also help reduce contamination.

IMPROPER REGRIND
Explanation: Regrind can be defined as any virgin material that has seen at least one heat excursion through the molding machine. It can be in the form of molded parts or runner systems. Solution: Grinding the plastic in a granulator that is specially designed for the purpose creates the regrind. The material is ground until it falls through a screen with specifically sized openings. The larger the openings, the larger the regrind pellet. If the granulator is not cleaned out between changes (including the screen), pellets of incompatible materials may be mixed with the next material and this causes contamination. Granulators must be completely taken apart to perform a thorough cleaning between uses. Do not assume that the granulator will always be used only for a certain material. Plans have a way of changing. As soon as a run is completed, the granulator should be removed from service and cleaned. Use of compressed air, combined with wiping with clean rags will suffice, as long as every component is cleaned, including rotor, blades, container, screen, sidewalls, and feed throat.

EXCESSIVE MOISTURE
Explanation: Excessive moisture should be considered a contaminant. It doesn't belong in the molding compound. Moisture turns to steam when heated in the injection unit, and this steam interferes with molecular bonding. This causes splay, which is a visual defect, but also creates a weak part due to brittleness. Solution: Although it is commonly understood that non-hygroscopic material does not require drying, do not take chances. Dry all materials. It may be that fillers used in the material are hygroscopic and they will absorb moisture. Every plastic material requires specific drying conditions. And each material should be dried according to the material suppliers recommendations. The desired moisture content is between 1/10th of 1 percent and 1/20th of 1 percent by weight. This means the dry air being used to take moisture from the material should have a dew point of -20 to -40 degrees F.

OPERATOR
POOR HOUSEKEEPING

Explanation: The machine operator may be the source of contamination in a variety of ways. First, if the operator is allowed to have food or drink at the work station, these may accidentally get spilled into containers holding fresh material ready to go into the hopper. Second, the operator may have been instructed to keep the area clean and sweeping dust into the air may result in contaminating raw material or freshly molded parts. Third, a lack of concern or outright sabotage could be the incentive to purposely add contaminants to the molding compound. Solution: If possible, run the machine on automatic cycle, using the operator only to interrupt the cycle if an emergency occurs. Use a robot if an ``operator'' is really necessary. And, instruct all employees on the importance of maintaining contaminant-free areas.
[ ... ]

Jetting

Jetting can be defined as a ``snake-like'' pattern on the surface of a molded part, usually emanating from the gate area. It is indicative of an undesirable turbulence and splitting of the flow front.

MACHINE
EXCESSIVE INJECTION SPEED

Explanation: Excessive injection speed (fill rate) will cause the molten plastic to form jet streams as it is pushed through the gates instead of the more desirable wide "tongue'' of material. These snake-like streams cool independently from the surrounding material and are visible on the molded part surface. Solution: Reducing the injection speed will allow the plastic flow front to stay together and not form the individual streams that cause the jetting patterns on the part surface.

BARREL TEMPERATURE TOO HIGH OR TOO LOW
Explanation: When barrel temperatures are too low, the material will not be heated to the proper temperature for adequate flow. The material will push slowly into the mold and the flow front will break up into individual streams as resistance builds up. This will cause jetting patterns. On the other hand, if the barrel temperature is too high, the material is pushed into the mold too quickly. This causes the flow front to split apart as it enters the cavity and the jetting patterns will develop. Solution: Decrease or increase the barrel temperature accordingly. The material supplier can recommend the best starting point for barrel temperature and it can be adjusted from that point. Make changes in 10 degree F increments and keep the profile so it is heating progressively from back to front.

SMALL NOZZLE OPENING
Explanation: If the nozzle opening (or sprue bushing opening) is too small for the material being molded, the restriction may cause the material to flow too slowly and solidify early. The flow front may break apart as it travels through the gate (due to sidewall friction) and jetting patterns may develop. Solution: Increase the nozzle opening. As a general rule, the nozzle opening should never be less than 7/32'' in diameter. The stiffer the material flow, the larger that opening should be. Make sure that the sprue bushing opening diameter matches or is 1/32'' larger than the nozzle opening.

LOW NOZZLE TEMPERATURE
Explanation: As material is transported through the heating barrel, it is gradually brought up to the ideal processing temperature by absorbing heat from the heating bands and frictional heat, which is created by the shearing action of the rotating screw within the barrel. In the last heating zone, the material is exposed to is the nozzle. By the time the material gets to the nozzle, it should already be at ideal molding temperature and only a small amount of heat needs to be applied at this point to keep the resin flowing. If the nozzle is not hot enough, however, the material will begin to cool off too quickly as it leaves the barrel and the flow front will not flow properly, breaking into many streams and causing jetting. Solution: Increase the nozzle temperature. As a rule-of-thumb the nozzle temperature should be set at 10 degrees F higher than the setting for the front zone of the barrel. This helps compensate for heat loss due to metal-to-metal contact between the nozzle and the sprue bushing and keeps the material hot enough to flow properly, eliminating jetting.

MOLD
LOW MOLD TEMPERATURE
Explanation: Generally, a hot mold will allow a material to stay molten longer than a cold mold and cause the molecules to pack together properly before they solidify. This results in a dense part with no separation of layers. If the mold is too cold, the molecules solidify before they are packed together and may break up into separate units. As they travel through the gate these units split up and form jetting patterns on the part surface. Solution: Increase the mold temperature to the point at which the material has the proper flow and packs out the mold without jetting. Start with the material suppliers recommendations and adjust accordingly. Allow 10 cycles for every 10-degree change for the process to re-stabilize.

SMALL GATES AND/OR RUNNERS
Explanation: Gates and/or runners that are too small will cause excessive restriction to the flow of the molten plastic. Many plastics will then begin to solidify before they fill the cavity. The result is an unpacked condition and the flow front may break into separate streams, causing jetting patterns to develop. Solution: Examine the gates and runners to determine if any burrs or other obstructions exist. If possible, perform a computer analysis to determine the proper sizing and location of gates and runners. Ask the material supplier for data concerning gate and runner dimensioning for a specific material and flow rate.

IMPROPER GATE LOCATION
Explanation: If certain materials are injected directly across a flat cavity surface they tend to slow down quickly as a result of frictional drag and cool off before the cavity is properly filled. As the material tries to flow through the gate, it is pulled apart into several streams and this forms a jetting pattern on the part. Solution: Relocate, or redesign, the gate so that the molten plastic is directed against an obstruction such as a core pin. This will cause the material to disperse and continue to flow instead of slowing down.

EXCESSIVE GATE LAND LENGTH
Explanation: The area that surrounds the gate itself is called its land. It determines the distance a material must travel in a restricted state immediately before it enters the cavity. The length of this travel (land) should be no more than 1/8''. The land acts like a tunnel when the mold is closed and if the tunnel is too ling the material begins to cool off before it can get to the cavity. This causes the material to split into streams that create the familiar jetting pattern on the part. Solution: Decrease the gate land length. It is best to construct the mold so that the gates are located in replaceable inserts. That way they can be replaced easily at times when adjustments are needed. The insert should include the land area. This land length should be no less than 0.030'' and no greater than 0.125''.

MATERIAL
IMPROPER FLOW RATE

Explanation: Resin manufacturers supply specific formulations in a range of standard flow rates. Thin-walled products may require an easy flow material while thick-walled products can use a material that is stiffer. It is better to use as stiff a flow as possible because that improves physical properties of the molded part. But, the stiff material will be more difficult to push and this may result in a breakup of the flow front as the material enters the gate. The breakup appears as a jetting pattern. Solution: Utilize a material that has the stiffest flow possible without causing jetting. Contact the material supplier for help in deciding which flow rate should be used for a specific application.

OPERATOR
INCONSISTENT PROCESS CYCLE

Explanation: It is possible that the machine operator is the cause of delayed or inconsistent cycles. This will result in erratic heating of the material in the injection barrel. If such a condition exists, the colder particles may not fill the mold before they fully solidify. Jetting may be caused as these colder areas attempt to push through the gate and are torn apart due to sidewall friction. Solution: If possible, run the machine on the automatic cycle, using the operator only to interrupt the cycle if an emergency occurs. Use a robot if an ``operator'' is necessary. In addition, instruct all employees on the importance of maintaining consistent cycles.
[ ... ]

Knit lines

Knit lines can be defined as the inability of two or more flow fronts to ``knit'' together, or "weld", during the molding process. This normally occurs around holes or obstructions and causes locally weak areas in the molded part.

MACHINE
LOW BARREL TEMPERATURE
Explanation: When barrel temperatures are too low, the material will not be heated to the proper temperature for adequate flow. The material will push slowly into the mold and the flow fronts that form around obstructions will not be hot enough to reunite after they travel around those obstructions. Solution: Increasing the barrel temperatures will allow the flow fronts to stay hotter longer and knit better when they reunite. It is practically impossible to eliminate knit lines once they are formed but they can be minimized.

INADEQUATE BACK PRESSURE
Explanation: The back pressure control is used to impart a resistance to the molten material being prepared in the barrel for the upcoming cycle. This resistance is used to help preheat the material and also control the density of the melt before it is injected into the mold. If the back pressure setting is too low, the material may not be brought to the proper temperature and the knit line areas will be more evident due to their inability to reunite. Solution: Increase the back pressure to raise the melt temperature and improve the ability for the fronts to unite. This is best accomplished by starting at the minimum of 50 psi and increasing in 10-psi increments until the knit lines improve. Do not exceed 300 psi. The higher the back pressure, the hotter the plastic, and excessive back pressure will thermally degrade the plastic.

INJECTION PRESSURE 0R SPEED TOO LOW
Explanation: If the injection speed or pressure is too low, the molten plastic will not be pushed into the mold cavity fast enough to fill and knit at converging flow fronts because it cools down and solidifies too soon. Solution: Increase the injection pressure or speed. While these two parameters are related, it is not proper to adjust them both at the same time. Adjust them each independently and monitor the results closely to determine whether or not the other needs adjustment. As a rule-of-thumb, it is best to make adjustments in increments of no more than 10% of the original setting.the plastic, and excessive back pressure will thermally degrade the plastic.

MOLD
LOW MOLD TEMPERATURE

Explanation: Generally, a hot mold will allow a material to stay molten longer than a cold mold and cause the molecules to flow farther before they solidify. This results in a dense part with maximum welding at knit line locations. If the mold is too cold, the molecules solidify before they are packed and the knit lines will be more evident and much weaker. Solution: Increase the mold temperature to the point that the material has the proper flow and packs out the mold with maximum knit line strength. Start with the material suppliers recommendations and adjust accordingly. Allow 10 cycles for every 10-degree change for the process to re-stabilize.

SMALL GATES AND/OR RUNNERS
Explanation: Gates and/or runners that are too small will cause excessive restriction to the flow of the molten plastic. Many plastics will then begin to solidify before they fill the cavity. The result is an unpacked condition and knit lines will be weaker and more evident. Solution: Examine the gates and runners to determine if any burrs or other obstructions exist. If possible, perform a computer analysis to determine the proper sizing and location of gates and runners. Ask the material supplier for data concerning gate and runner dimensioning for a specific material and flow rate.

IMPROPER GATE LOCATION
Explanation: If certain materials are injected directly across a flat cavity surface they tend to slow down quickly because of frictional drag and cool off before the cavity is properly filled. The flow front breaks into many streams and they have difficulty welding back together before they solidify. Solution: Relocate, or redesign, the gate so that the molten plastic is directed against an obstruction such as a core pin. This will cause the material to disperse and continue to flow instead of slowing down.

EXCESSIVE GATE LAND LENGTH
Explanation: The area that surrounds the gate itself is called its land. It determines the distance a material must travel in a restricted state immediately before it enters the cavity. The length of this travel (land) should be no more than 1/8''. The land acts like a tunnel when the mold is closed and if the tunnel is too long the material begins to cool off before it can get to the cavity. This causes the material to split into streams that can create knit line conditions. Solution: Decrease the gate land length. It is best to construct the mold so that the gates are located in replaceable inserts. That way they can be replaced easily at times when adjustments are needed. The insert should include the land area. This land length should be no less than 0.030'' and no greater than 0.125''.

MATERIAL
IMPROPER FLOW RATE
Explanation: Resin manufacturers supply specific formulations in a range of standard flow rates. Thin-walled products may require an easy flow material while thick-walled products can use a material that is stiffer. It is better to use as stiff a flow as possible because that improves physical properties of the molded part. But the stiff material will be more difficult to push and this may result in a breakup of the flow front as the material enters the gate. This may cause streams of flow that cannot weld back together properly and they will form weak knit lines. Solution: Utilize a material that has the stiffest flow possible without causing knit lines. Contact the material supplier for help in deciding which flow rate should be used for a specific application.

OPERATOR
INCONSISTENT PROCESS CYCLE

Explanation: The machine operator may be the cause of delayed or inconsistent cycles. This will result in erratic heating of the material in the injection barrel. If such a condition exists, the colder particles may not fill the mold before they fully solidify. The flow front may break up into streams that cannot weld back together properly and weak knit lines may form. Solution: If possible, run the machine on the automatic cycle, using the operator only to interrupt the cycle if an emergency occurs. Use a robot if an ``operator'' is necessary. In addition, instruct all employees on the importance of maintaining consistent cycles.
[ ... ]

Sink Mark

A Sink Mark can be defined as a depression, resembling a dimple or groove, caused by excessive localized shrinking of the material after the part has cooled.

MACHINE
BARREL TEMPERATURE TOO HIGH
Explanation: If the barrel temperature is too high, the resin absorbs an excessive amount of heat and this increases the size of the voided area between the plastic molecules. Upon cooling, the skin of the material solidifies first and the remaining resin closes up the excessively large molecules and voids as it cools, pulling the solidified skin with it. The larger the molecules and voids, the greater the amount of shrinkage. This is displayed as sink marks. Solution: Decreasing the barrel temperature allows the molecules and voids to expand and contract normally and provide consistent shrinkage values. Consistent, uniform shrinkage minimizes the condition that causes sink marks.

INSUFFICIENT INJECTION PRESSURE OR TIME
Explanation: Injection pressure must be high enough to push molten material into the mold, through the runners and gates, and into the cavity image area. It should be used to force material into every part of the mold until it is packed solidly. The proper amount of pressure held for the proper amount of time ensures that all the resin molecules are the same size and are held closely together while they cool and solidify. This creates uniform shrinkage after the part is removed from the mold. But, if inadequate pressure is used or if it is applied for too short a period of time, the molecules will not be constrained during the solidification phase and the entire part will not shrink uniformly, resulting in sink marks. Solution: Increase the amount of pressure or the time applied. Upon initial startup the mold should be filled incrementally starting with intentional short shots (if the mold design allows) and progressively increasing pressure shot-by-shot until the mold is filled and packed properly. If injection pressure and time are adequate the shrinkage should be uniform and consistent resulting in parts without sink marks.

INADEQUATE COOLING TIME
Explanation: The cooling phase of the total molding cycle determines how long the molten material is held in a constrained condition until a strong skin is formed. After that, the part can be ejected from the mold and the next cycle can begin. If that cooling time is too short, the skin will not be of sufficient thickness and strength to hold the part together after ejection from the mold and continued cooling may cause sink marks due to inconsistent and non-uniform shrinkage. Solution: Increase the cooling time portion of the cycle. It is true that longer cycles make the part more expensive but there is a minimum amount of time required for the resin to form a proper skin. It depends on what material is being molded. A general rule-of-thumb for a part with a wall thickness of 0.100'', the cooling time should be 20 seconds. The overall cycle would then be 25-30 seconds.

INSUFFICIENT CUSHION AND/OR HOLD TIME
Explanation: A cushion (pad) is required at the end of the injection stroke to maintain steady pressure against the molten material after it has filled the cavity image. This pressure (and the time it is applied) keep the molecules packed together and constrained while the product skin forms and solidifies enough for the part to be ejected. If the cushion is too small or the time is too short, the plastic molecules are not constrained and some will actually pull back out of the cavity. This allows the remaining molecules to move when the part is ejected and they will cause excessive shrinkage and sink marks as they contract beyond their normal values. Solution: Maintain a cushion that is somewhere between 1/8'' and 1/4'' at the end of the injection stroke. This provides something against which hold pressure can be applied. The amount of time for holding pressure should be long enough for the gate to freeze, normally 3-4 seconds.

EXCESSIVE NON-RETURN VALVE CLEARANCE
Explanation: The non-return valve, found in the front section of the screw and barrel assembly, keeps molten plastic from slipping back over the injection screw when the screw is pushed forward during the injection phase of the process. The valve lies between the outside diameter of the screw and the inside diameter of the barrel and creates a seal between the two. If there is too much clearance (due to wear) the sealing effect is lost and slippage occurs. This results in a reduction in volume of plastic and a bottoming out of the injection stroke, eliminating the required cushion. Solution: Inspect the non-return valve mechanism and replace worn or damaged components. This wear is normal but is accelerated by molding materials that have reinforcements (such as glass) in them. The valve should be inspected at least every three months.

MOLD
MOLD TEMPERATURE TOO HIGH OPPOSITE RIBS

Explanation: Generally, a hot mold will allow a material to stay molten longer than a cold mold and cause the molecules to stay fluid longer before they cool and solidify. Upon ejection from the mold the material will be allowed to contract more than normal and excessive shrinkage will occur. This condition often occurs in the area of ribs because of the extra plastic in those areas, which requires more extensive cooling to maintain consistent shrinkage. Inconsistent shrinkage will result in sink marks. Solution: Decrease the mold temperature to the point at which the material has the proper flow and packs out the mold without shorting. Start with the material suppliers recommendations and adjust accordingly. Allow 10 cycles for every 10-degree change for the process to re-stabilize.

SMALL GATES AND/OR RUNNERS
Explanation: Gates and/or runners that are too small will cause excessive restriction to the flow of the molten plastic. Many plastics will then begin to solidify before they fill the cavity. The result is a material that is not fully contained within the metal mold surfaces and is allowed to shrink beyond normal expectations. The extended shrinkage causes sink marks. Solution: Examine the gates and runners to optimize their size and shape. Do not overlook the sprue bushing as a long sprue may solidify too soon. Use a heated bushing or extended nozzle to minimize sprue length. Ask the material supplier for data concerning gate and runner dimensioning for a specific material and flow rate.

IMPROPER GATE LOCATION
Explanation: If certain materials are injected directly across a flat cavity surface they tend to slow down quickly as a result of frictional drag and cool off before the cavity is properly filled. The material is not held under proper pressure while solidifying and excessive shrinkage will cause sink marks as the part cools after ejection from the mold. Solution: Relocate or redesign the gate so that the molten plastic is directed against an obstruction such as a core pin. This will cause the material to disperse and continue to flow instead of slowing down.

EXCESSIVE THICKNESS AT MATING WALLS
Explanation: When a wall meets another wall, or when a boss is located on a wall, the area where they form a junction becomes a larger mass of plastic than the area surrounding it. The surrounding area cools and is already solidified while the larger mass continues to cool and shrink. Because the surrounding area is solid, non-uniform shrinkage occurs as the large mass area shrinks in on itself, causing sink marks to appear. Solution: Although it is good design practice to maintain all walls at a uniform thickness, in areas where a junction is formed, one of the walls should be between 60% and 70% of the mating wall thickness. This will minimize the mass at the junction until the shrinkage is equal in all areas and sink marks will not develop.

MATERIAL
IMPROPER FLOW RATE

Explanation: Resin manufacturers supply specific formulations in a range of standard flow rates. Thin-walled products may require an easy flow material while thick-walled products can use a material that is stiffer. It is better to use as stiff a flow as possible because that improves physical properties of the molded part. But the stiff material will be more difficult to push and this may result in a less dense material filling the cavity image. The lower this density, the higher the amount of shrinkage that will occur after ejection, and sink marks may occur due to an imbalance of shrinkage factors. Solution: Utilize a material that has the stiffest flow possible without causing sink marks. Contact the material supplier for help in deciding which flow rate should be used for a specific application.

OPERATOR
INCONSISTENT PROCESS CYCLE

Explanation: The machine operator may be opening the gate too soon, thereby effectively shortening the overall cycle time. This would cause the part to be ejected before the skin has formed properly and the resultant excessive shrinkage may cause sink marks to form. Solution: If possible, run the machine on the automatic cycle, using the operator only to interrupt the cycle if an emergency occurs. Use a robot if an ``operator'' is necessary. In addition, instruct all employees on the importance of maintaining consistent cycles.
[ ... ]

Cracking and/or Crazing

Cracking and/or Crazing can be defined as a fracture or surface breakage in the material of a molded part, usually found in weld line areas, but also on the surface in general.

MACHINE
MOLDED-IN STRESSES

Explanation: Although stress cannot be eliminated, excessive stress can be molded into the parts by using too high an injection pressure, too high a holding pressure, or too fast a filling rate. The molten material is forced into the mold and held there under great pressure until it partially solidifies. When the mold opens and the part is ejected, it is still cooling but is no longer constrained by the mold. Some of the molded-in stresses are allowed to release and a ``splitting'' of the plastic occurs, usually in the weakest area. Solution: Reduce packing and fill rates by adjusting until the part is properly filled with minimum stresses. Maintain a holding pressure that is no more than 1/2 the primary injection pressure.

COOLING TIME TOO SHORT
Explanation: If the cooling time is too short, the part is ejected before the material has formed a skin solid enough to constrain movement of the remaining plastic material while it cools. The surface will split open and form crazing, or cracks will form throughout the part. Solution: Increase the cooling time portion of the cycle. This holds the mold closed longer and allows a thicker skin to form on the molded part. The skin will be strong enough to keep crazing or cracks from forming.

MOLD
UNDERCUTS OR PARTING LINE BURRS

Explanation: For the molded part to eject there must be no restrictions to a straight push out of the cavity. An undercut, reverse draft, or burr will cause such a restriction. This will try to keep the part in the mold while the ejection system tries to push it out of the mold. The conflict that arises will cause the part to fracture or crack. Solution: Inspect the sidewalls and edges of the cavity. Make sure there is adequate draft (see the next paragraph) and that there are no burrs or other undercut conditions. If there are they must be removed by stoning or machining.

INSUFFICIENT DRAFT ALLOWANCE
Explanation: A draft angle is simply a tapered side wall that is used to allow easy removal of the molded part from the cavity of the mold that forms it. Without this taper the vacuum that is created (when plastic displaces air) in the cavity cannot be overcome and the part will simply crack as the ejection system tries to push it out of the mold. Solution: As a general rule-of-thumb, a draft angle should be at least 1 degree per side to facilitate easy ejection. This does result in a dimensional change in the part and must be considered in the mold design phase. To minimize future problems, the product designer should be made aware of this requirement.

USE OF MOLD RELEASE
Explanation: Mold release will interfere with the molecular bonding of the plastic. Material enters a cavity in layers and these layers must be allowed to bond together. Mold release interferes with that bonding and will cause crazing to occur on the surface of the part. Solution: The remedy is to keep the mold as clean as possible and make every effort to eliminate the use of external mold releases.

IMPROPER EJECTOR DESIGN
Explanation: If ejector pins are too small, or located on thin flat sections of the part, the plastic will be distorted during ejection and cracks will form due to the amount of stress being imparted. Also, if the ejection speed is too great, the plastic will not have time to conform to the normal stress being applied and cracks will form from distortion. Solution: Any evidence of cracking in ejector pin areas indicate the pins are too small, or the ejection speed was too great, or there was too much injection pressure used to fill the mold. Injection pressure was covered earlier. Ejector pins should be resized, or relocated. They need to be located such that they are close to side walls or under bosses or other strong areas of the part that can absorb the ejection stresses being produced. They need to be as large as possible in diameter to distribute the ejector forces over a large area.

MATERIAL
DEGRADED MATERIAL

Explanation: One common cause of cracking is the use of material that has become degraded. This can be the result of overheating in the barrel, but a more common cause is the use of bad regrind. Regrind that has been used over and over can easily become degraded to the continued exposures to elevated temperature. It melts at lower temperatures than virgin so the regrind can degrade in the barrel, which must be heated high enough to melt the virgin thereby degrading the regrind. Degraded material is weak and does not have a good molecular bonding of molecules. This results in cracking when the part is exposed to any stress, such as that of the ejection system. Solution: Use only high grade regrind and use it only once. Mix regrind with virgin at a level of approximately 15% regrind by weight to minimize the tendency to degrade. If this is still a problem, eliminate the use of regrind altogether.

EXCESSIVE MOISTURE
Explanation: Excessive moisture causes cracking or crazing because the water droplets actually turn to steam when heated in the injection unit, and these steam pockets erupt causing voided areas between molecules. This causes those areas to be extremely weak and brittle. The voided areas easily break apart once the mold opens and relieves constraint conditions. Solution: Although it is commonly understood that non-hygroscopic material do not require drying, do not take chances. Dry all materials. It may be that fillers used in the material are hygroscopic and they will absorb moisture. Every plastic material requires specific drying conditions. And each material should be dried according to the material suppliers recommendations. The desired moisture content is between 1/10th of 1 percent and 1/20th of 1 percent by weight. This means the dry air being used to take moisture from the material should have a dew point of -20 to -40 degrees F.

OPERATOR
POOR HOUSEKEEPING

Explanation: Machine operators who have been told to use mold release sprays sparingly, will eventually overuse the spray. The thought seems to be that if a little bit works, a lot will work better. Excessive mold release will interfere with molecular bonding of the plastic and cause weak areas that break apart easily. Solution: If possible, run the machine on automatic cycle, using the operator only to interrupt the cycle if an emergency occurs. Use a robot if an ``operator'' is really necessary. And, instruct all employees on the importance of maintaining consistent cycles.
[ ... ]

Warpage

Warpage can be defined as a dimensional distortion in a molded product after it is ejected from the mold at the end of the injection molding process. Warpage is sometimes called ``potato-chipping'' because the part tends to appear wavy.

MACHINE
INADEQUATE INJECTION PRESSURE OR TIME

Explanation: If too little injection pressure is used the plastic material will tend to cool and solidify before the mold is packed out. If no packing is achieved the individual molecules are not held tightly together and have space to move while the part is cooling. Also, if the injection hold time is not long enough, the packing process is minimized and the molecules can relax before full solidification occurs. In either case, as the part cools it is uncontrolled and the plastic is allowed to move because it is not being constrained. Each area of the part cools at a different rate and warpage will occur due to the differences. Solution: Increase the injection pressure or time applied. This will ensure the total part is cooling while constrained and the tendency for warpage will be minimized.

INADEQUATE RESIDENCE TIME
Explanation: Residence time is the amount of time a material must spend being exposed to heat in the barrel. The time is determined by the ability of the specific resin to absorb heat enough to be properly processed. Inadequate residence time will result in under-heated material, which causes the material to be stiff. It will cool off before the mold is packed and individual molecules will be unconstrained while they solidify. Molecules that are not constrained during cooling will shrink at differing rates throughout the part and warpage will occur. Solution: Increase the residence time by adding time to the cooling portion of the cycle. While increased cycle time may add cost to the final product, each material requires a specific minimum amount of time to absorb heat in the barrel, and if the time is not long enough warped parts will occur.

BARREL TEMPERATURE TOO LOW
Explanation: When barrel temperatures are too low, the material will not have a chance to heat to the proper flow temperature. The cold material gets pushed into the mold but solidifies before the molecules are packed and constrained. This results in warpage as the molecules shrink at varying rates. Solution: Increase the barrel temperature. This will allow the material to come to proper heat and it will fill the mold before solidification takes place. The molecules will be packed and constrained as they cool, thus shrinking at uniform rates, minimizing the chance of warpage.

NOZZLE TEMPERATURE TOO LOW
Explanation: The nozzle, being the final transfer point between the heated barrel and the mold, is a critical area and must be scrutinized whenever splay patterns occur. If the nozzle is too cold, the plastic material may slow down as it travels through the area and the molecules will not get packed under constraint. They will shrink at varying rates and cause warpage. Solution: Increase the nozzle temperature 10 degrees F at a time until the warpage disappears. If splay still appears, reduce the temperature of the nozzle, and make sure the nozzle being used is of the proper design for the material being molded. There are many different nozzle designs and some may interfere with proper flow if they are not designed for the material in use.

EXCESSIVE STRESS BUILDUP
Explanation: The injection molding process tends to build up physical stress in a molded part due to the stretching and squeezing action that takes place on the individual plastic molecules as they are heated, expanded, cooled and contracted. They must be allowed to relax and recover in a constrained position before they solidify or the stress will be locked in. It will then be released as the part cools after being ejected from the mold and warpage will occur. Solution: Increase the barrel temperature and decrease injection pressure until the stress is minimized. It can never be eliminated but lower pressure will result in lower stress. And, higher barrel temperatures allow the use of lower injection pressures.

MOLD
SMALL GATES

Explanation: Gates that are too small will cause excessive restriction to the flow of the molten plastic as it passes through. This restriction may cause additional physical stress to the plastic molecules as they are stretched and squeezed again going through the gate area. The stress gets released after ejection and the parts will warp. Solution: Optimize gate size and shape. The material supplier can provide data on proper sizing and shape, or use a computer finite element analysis program to help make the determination.

MOLD TEMPERATURE TOO LOW
Explanation: Generally, a hot mold will allow a material to stay molten longer than a cold mold and cause the molecules to stay fluid longer before they cool and solidify. If the mold is too cold the molecules will solidify before they are packed and will shrink at differing, uncontrolled rates. This is a prime cause of warpage. Solution: Increase the mold temperature to the point at which the material has the proper flow and packs out the mold with maximum fill. Start with the material suppliers recommendations and adjust accordingly. Allow 10 cycles for every 10-degree change for the process to re-stabilize.

UNEVEN MOLD TEMPERATURES
Explanation: The plastic molecules must cool and shrink evenly to resist warpage. If the mold is not cooling the plastic in a uniform manner the molecules will have varying cooling and shrinking characteristics and this will cause warpage. Solution: Check the surfaces of the mold that are in contact with the molten plastic. Use a fast-acting pyrometer to determine if there is more than a 10 degree F difference between any two points, even between the two mold halves. A difference greater than 10 degrees F will cause too great a difference in shrink rates and warpage will occur.

NON-UNIFORM EJECTION
Explanation: It is possible that either the ejection system of the mold or the press will not be operating properly. If the part is warm enough and the ejection force is not even and exactly perpendicular to the part, stresses will be set up in the part as it tries to resist the ejection activity. These stresses will cause warpage of the part as it cools after being ejected. Solution: Inspect and adjust the ejection system(s) as required. Make sure all adjusting devices are locked down to eliminate slipping, and that all components are properly lubricated. It may be necessary to use a guided ejection system that utilizes leader pins and bushings to keep the system in line and even.

MATERIAL
IMPROPER FLOW RATE

Explanation: Resin manufacturers supply specific formulations in a range of standard flow rates. Thin-walled products may require an easy flow material while thick-walled products can use a material that is stiffer. It is better to use as stiff a flow as possible because that improves physical properties of the molded part. But the stiff material will be more difficult to push and this may result in the material solidifying before full packing takes place. The molecules will be left to shrink at different rates and warpage will occur. Solution: Utilize a material that has the stiffest flow possible without causing warpage. Contact the material supplier for help in deciding which flow rate should be used for a specific application.

OPERATOR
INCONSISTENT PROCESS CYCLE

Explanation: The machine operator may be opening the gate too soon, thereby effectively shortening the overall cycle time. This would cause the part to be ejected before the skin has formed properly and excessive, uncontrolled shrinkage may occur. The varying shrinkage rates will cause warpage. Solution: If possible, run the machine on the automatic cycle, using the operator only to interrupt the cycle if an emergency occurs. Use a robot if an ``operator'' is necessary. In addition, instruct all employees on the importance of maintaining consistent cycles.
[ ... ]

Non-fill (shorts)

Non-fill can be defined as an incomplete molded part caused by insufficient material injected into the mold. Non-fill can be an extension of a flow line or knit line condition.

MACHINE
INSUFFICIENT MATERIAL IN HOPPER

Explanation: The most common cause of non-fill is insufficient material being injected into the mold, caused by not enough material in the hopper. Normally this is the result of employee error and the hopper was not checked often enough. It simply ran out of material. Solution: It is best to use an automated system that replenishes material in the hopper as it is used. That way the machine will never run out of plastic. If manual systems are utilized instead, the employee in charge must understand the importance of keeping the hopper filled. Alarm units can be used to emit an audible signal when the material in the hopper reaches a preset level.

LOW BARREL TEMPERATURE
Explanation: When barrel temperatures are too low, the material will not be heated to the proper temperature for adequate flow. The material will push slowly into the mold and the flow fronts that form will not be hot enough to complete the filling of the mold. Solution: Increasing the barrel temperatures will allow the flow fronts to stay hotter longer and complete the filling of the mold. Make sure the proper profile is being used and that the material heats progressively as it travels through the barrel from rear to front.

INADEQUATE BACK PRESSURE
Explanation: The back pressure control is used to impart a resistance to the molten material being prepared in the barrel for the upcoming cycle. This resistance is used to help preheat the material and also control the density of the melt before it is injected into the mold. If the back pressure setting is too low, the material may not be brought to the proper temperature and the flow fronts will not travel as far resulting in non-fill. Solution: Increase the back pressure to increase the melt temperature and improve the ability for the fronts to flow. This is best accomplished by starting at the minimum of 50 psi and increasing in 10-psi increments until the proper flow is attained. Do not exceed 300 psi. The higher the back pressure the hotter the plastic, and excessive back pressure will thermally degrade the plastic.

INJECTION PRESSURE OR SPEED TOO LOW
Explanation: If the injection speed or pressure is too low, the molten plastic will not be pushed into the mold cavity fast enough to fill because it cools down and solidifies too soon. Solution: Increase the injection pressure or speed. While these two parameters are related, it is not proper to adjust them both at the same time. Adjust them each independently and monitor the results closely to determine whether or not the other needs adjustment. As a rule-of-thumb, it is best to make adjustments in increments of no more than 10% of the original setting.

EXCESSIVE NON-RETURN VALVE CLEARANCE
Explanation: The non-return valve, found in the front section of the screw and barrel assembly, keeps molten plastic from slipping back over the injection screw when the screw is pushed forward during the injection phase of the process. The valve lies between the outside diameter of the screw and the inside diameter of the barrel and creates a seal between the two. If there is too much clearance (due to wear), the sealing effect is lost and slippage occurs. This results in a reduction in volume of plastic that gets injected into the mold and non-fill occurs. Solution: Inspect the non-return valve mechanism and replace worn or damaged components. This wear is normal but is accelerated by molding materials that have reinforcements (such as glass) in them. The valve should be inspected at least every three months.

BRIDGING IN FEED THROAT
Explanation: As material is fed from the hopper to the heating cylinder, it passes through the feed throat of the machine. This area must have a temperature maintained at around 100 to 150 degrees F, depending on the plastic being molded, to prepare the material for higher heats in the barrel. But, if the temperature is too high, the plastic pellets begin to get sticky and bond together. This will form a blockage in the feed throat and material will not be allowed to fall through. It forms a bridge across the feed throat opening. Solution: Decrease the feed throat temperature. The material supplier can provide the proper temperature value for a specific material. Make sure there is no obstruction in the water line used for cooling the feed throat.

INSUFFICIENT BARREL CAPACITY
Explanation: If the mold is running in a machine that does not have a large enough barrel, the material in the barrel may not be allowed to stay there long enough to absorb enough heat. The cold material will not flow as far as a hot material would and non-fill will occur. Increasing the heat may only degrade the plastic. Solution: Place the mold in a machine that utilizes the 20% to 80% rule. This states that, ideally, a barrel should be sized such that 50% of the capacity is used every shot, but based on heat sensitivity of the material being used, that ratio can be between 20% for most materials and 80% for heat sensitive materials. This formula allows enough time for the material to absorb heat properly before being molded.

MOLD
LOW MOLD TEMPERATURE
Explanation: Generally, a hot mold will allow a material to stay molten longer than a cold mold and cause the molecules to flow farther before they solidify. This results in a dense part with maximum fill. If the mold is too cold, the molecules solidify before they are packed and the flow fronts will not travel far enough to fill the cavity image. Solution: Increase the mold temperature to the point at which the material has the proper flow and packs out the mold with maximum fill. Start with the material suppliers recommendations and adjust accordingly. Allow 10 cycles for every 10-degree change for the process to re-stabilize.

SMALL GATES AND/OR RUNNERS
Explanation: Gates and/or runners that are too small will cause excessive restriction to the flow of the molten plastic. Many plastics will then begin to solidify before they fill the cavity. Solution: Examine the gates and runners to determine if any burrs or other obstructions exist. If possible, perform a computer analysis to determine the proper sizing and location of gates and runners. Ask the material supplier for data concerning gate and runner dimensioning for a specific material and flow rate.

IMPROPER GATE LOCATION
Explanation: If certain materials are injected directly across a flat cavity surface, they tend to slow down quickly as a result of frictional drag and cool off before the cavity is properly filled. The flow fronts have difficulty traveling far enough to pack out the part. Solution: Relocate, or redesign, the gate so that the molten plastic is directed against an obstruction such as a core pin. This will cause the material to disperse and continue to flow instead of slowing down.

INSUFFICIENT VENTING
Explanation: Venting is used to remove trapped air and gases from the closed mold, so molten material will be able to flow into every section of the mold. If the air and gases are not removed they act as a barrier to the flow of the plastic and will not allow filling to occur. Solution: Vent the mold by grinding thin (0.0005''-0.002'') pathways on the shutoff area of the cavity blocks. The viscosity of the plastic being molded determines the depth of the vent. Stiff materials can utilize deeper vents but fluid materials require thinner vents. In either case, the concept is to remove air from the mold as fast as possible with as deep a gate as the material viscosity will allow.

MATERIAL
IMPROPER FLOW RATE

Explanation: Resin manufacturers supply specific formulations in a range of standard flow rates. Thin-walled products may require an easy flow material while thick-walled products can use a material that is stiffer. It is better to use as stiff a flow as possible because that improves physical properties of the molded part. But, the stiff material will be more difficult to push and this may result in the flow fronts not traveling far enough to fill the cavity image. Solution: Utilize a material that has the stiffest flow possible without causing non-fill. Contact the material supplier for help in deciding which flow rate should be used for a specific application.

OPERATOR
INCONSISTENT PROCESS CYCLE
Explanation: It is possible that the machine operator is the cause of delayed or inconsistent cycles. This will result in erratic heating of the material in the injection barrel. If such a condition exists, the colder particles may not flow properly and the flow front may not be allowed to travel far enough to fill the mold. Solution: If possible, run the machine on the automatic cycle, using the operator only to interrupt the cycle if an emergency occurs. Use a robot if an ``operator'' is necessary. In addition, instruct all employees on the importance of maintaining consistent cycles.
[ ... ]

Burn marks

Burn marks can be defined as small dark brown or black discolorations on the surface of a molded part, usually found at the end of the material flow path or in blind pockets.

MACHINE
EXCESSIVE INJECTION SPEED OR PRESSURE

Explanation: Injection speed and pressure determine how fast molten resin is injected into a mold. If either is too high, the resin is forced in so fast that trapped air and gases are not allowed time to be vented. Many of these gases are pushed to the edge of the flow front and become compressed to the point that they auto-ignite, burning the surrounding plastic. The burned areas appear as char marks on the molded part. Solution: Reducing the injection speed or pressure will allow enough time for the gases or trapped air to escape through normal vent paths.

EXCESSIVE BACK PRESSURE
Explanation: While most materials will benefit from some back pressure application, there is a limit to the amount needed for a specific material and product. The whole idea of applying back pressure is to mix the material better, making it denser and more oriented for flow. However, this very act of mixing may introduce air into the melt, which may be too much for the venting system to handle under normal conditions. The excess air may be compressed at the vent locations and auto-ignite, causing burn marks on the part. There is also the possibility that shearing action from too high a back pressure setting will degrade the material in the barrel and cause burning to occur. Solution: Use minimum back pressure. All materials will benefit from approximately 50-psi back pressure, but some require up to 300 psi. The material supplier is the best source of information regarding proper back pressure settings for a specific material. When adjusting back pressure use increments of 10 psi.

HIGH SCREW ROTATION SPEED
Explanation: The turning of the screw brings fresh material into the heating cylinder and imparts a certain amount of heat to that material through rotary shear friction. The faster the screw turns, the greater the friction and shear heat created. If the speed is too high, the friction will cause the material to overheat and become thermally degraded. This causes small particles of charred material to form and these get pushed into the melt stream during injection. They will show up on the molded part as burned areas. Solution: Adjust the screw rotation speed. An average speed should be approximately 100 rpm. But, specific materials require specific rotation speeds. Consult the material supplier for the proper speed for a specific resin. When adjusting up or down, do so in increments of 10 rpm.

IMPROPER COMPRESSION RATIO OF SCREW
Explanation: Compression ratio is a value that indicates how much a screw will compress a material while it is being processed in the barrel of the machine. It is calculated by dividing the depth of the feed section (rear) of the screw by the depth of the metering section (front) and is usually less than 2 to 1. If the compression ratio is too great for the specific material being molded, the resin degrades thermally and the burned material flows into the molded part. Solution: The material supplier can recommend the proper compression ratio for a specific resin. A general-purpose screw can usually be used to provide adequate compression but specific conditions may require a screw that is specially designed for a given material.

FAULTY TEMPERATURE CONTROLLERS AND HEATER BANDS
Explanation: Temperature controllers are sensitive units and should be checked and calibrated often (every 3 months maximum). Heater bands do wear out or burn out and normally there is no way of knowing. If controllers or heater bands are not functioning properly, the other controllers and heater bands must compensate. The result is localized overheating of material in the cylinder. This material can degrade and char and enter the melt stream to become molded into the plastic part. Solution: Inspect and calibrate temperature controllers at least every 3 months. Inspect and replace damaged heater bands as necessary. In addition, look for broken or crimped wires, poor insulation, rusted areas on the heater bands, and poor electrical connections.

EXCESSIVE BARREL TEMPERATURES
Explanation: When barrel temperatures are set too high, the resin will overheat and undergo thermal degradation. This degraded material will break loose, enter the melt stream, and become molded into the finished part. Solution: Establish proper barrel temperatures and profile. The material supplier will provide accurate barrel temperature requirements. The profile should have the barrel temperatures increase progressively from rear to front.

MOLD
IMPROPER SPRUE BUSHING-TO-NOZZLE SIZING

Explanation: If the sprue bushing diameter does not match the nozzle opening (or vice-versa) molecular shearing will occur at their junction and some of the material flowing through that area will degrade. The degraded material will enter the melt stream and be molded into the finished part. Solution: Using bluing dye or thick paper, press the nozzle against the sprue bushing, and check the impression of the openings of each. They should be close to the same and not be off center. Replace the nozzle tip or the sprue bushing if they do not match. Re-center the heating cylinder to the mold if they are off center.

IMPROPER VENTING
Explanation: Air is trapped in a closed mold and incoming molten plastic will compress this air until it auto-ignites. This burns the surrounding plastic and results in charred material in the form of burn marks. Solution: Vent the mold by grinding thin (0.0005''-0.002'') pathways on the shutoff area of the cavity blocks. Vents should take up approximately 30% of the perimeter of the molded part. Vent the runner, too. Any air that is trapped in the runner will be pushed into the part. Blind pockets can be vented using flush core pins or fake ejector pins and grinding a flat down the entire length of the pins.

UNDERSIZED GATES
Explanation: Gates are used to determine the flow of the material into the cavity. They are intended to cause a slight restriction and impart shearing heat to the plastic, as well as to control the speed at which the plastic enters. If the gate is too small, the restriction is too great and the material will overheat causing degradation. The degraded material shows up as burned resin in the finished part. Solution: Size the gate according to the material supplier's recommendations. The gate should be as thin as possible to minimize cycle time, but as thick as necessary to reduce the tendency to degrade material. Gates should be installed in removable inserts so they can easily be altered or replaced.

MATERIAL
EXCESSIVE USE OF REGRIND
Explanation: Regrind melts at a lower temperature than virgin, and a regrind/virgin blend must be heated high enough to melt the virgin, which may degrade the regrind. For this reason, regrind use should be minimized if mixed with virgin material. However, regrind by itself can be used successfully by lowering the melt temperature. Solution: Use 100% regrind, or, if mixing with virgin, limit the amount of regrind to 15% by weight. It may be necessary to use no regrind at all, especially in some medical and electronic products.

OPERATOR
INCONSISTENT PROCESS CYCLE

Explanation: It is possible that the machine operator is the cause of delayed or inconsistent cycles. This will result in excessive residence time and erratic heating of the material in the injection barrel. If such a condition exists, materials may degrade, resulting in locally burned resin. Solution: If possible, run the machine on automatic cycle, using the operator only to interrupt the cycle if an emergency occurs. Use a robot if an ``operator'' is really necessary. And, instruct all employees on the importance of maintaining consistent cycles.
[ ... ]

Bubbles

Bubbles can be defined as a voided area trapped within a molded plastic part. It differs from a blister in that there is no surface protrusion with a bubble. Bubbles are usually caused by trapped gases or air pockets, but can also be caused by differential shrinking.

MACHINE
LOW INJECTION PRESSURE OR HOLD TIME
Explanation: If injection pressure or hold time are too low, the molten material is not forced into the mold cavity and trapped gases and air will form voids because the gases will not be forced out of the mold through vent paths. Solution: Increase the injection pressure and/or the hold time to help force the gases out as the plastic is pushed into the cavity.

INSUFFICIENT MATERIAL
Explanation: Too little material feed will have the same effect as low injection pressure. The material will not be forced into the cavity and gases will be trapped, forming voids due to a lack of molecular packing. Solution: It is important to establish a feed setting that allows a 1/8'' to 1/4'' cushion of material at the end of the injection stroke. Without this cushion, there is no material against which holding pressure can be applied to force material into the cavity.

IMPROPER INJECTION TEMPERATURE PROFILE
Explanation: The injection temperature profile addresses four heating zones of the injection barrel. These are commonly known as rear, center, front, and nozzle. The rear is also know as the feed zone, the center is known as the transition zone, and the front is known as the metering zone. The purpose of the feed zone (rear) is to start the material through the heating process. The heat is kept lower at this point but high enough to begin softening the plastic. The transition zone (center) heats the plastic higher and begins to compress it, squeezing out the trapped gases. In the metering zone (front) the material is brought up to the final, ideal temperature and is further compressed and sheared, which also introduces more heat. In the nozzle zone the material is simply kept at the upper temperature as it is injected into the mold. Any imbalance in the temperature values of these zones may result in plastic particles that are not properly melted at the right time. This will not allow gases to escape and voided areas (bubbles) will appear. Solution: Maintain a proper temperature profile. This is readily obtained from the resin supplier, but a rule-of-thumb sets the temperature controls at increments of 50 to 100 degrees F from rear to front, and the nozzle at the same temperature as the front zone. An air shot from the nozzle should produce a bubble-free stream of plastic that has the approximate consistency of warm honey. Remember that the temperature control settings are not the same as the actual temperature of the plastic. They are usually 50 to 100 degrees higher than the actual plastic temperature to accommodate the rapid travel of material through the barrel.

EXCESSIVE INJECTION SPEED
Explanation: The injection speed determines how fast the material is injected into the mold. If it is too slow, the material tends to cool off and solidify before the mold is fills, which results in a short shot. If it is too fast, the material tends to tumble and become turbulent, which traps air and gases in the resin. These gases then show up as bubbles because they were not able to reach the vented areas of the mold. Solution: Start with the supplier's recommendations for injection fill speed. Adjust up or down according to the results. If bubbles appear, slow down the rate. If short shots appear, speed up the rate.

INSUFFICIENT BACK PRESSURE
Explanation: Back pressure is used to help mix the material and homogenize it. It also helps remove trapped air and densifies the melt. If back pressure is insufficient the gases and trapped air are not allowed to escape and remain in the plastic melt as bubbles that can be molded into the finished part. Solution: Increase the back pressure. Most materials will benefit from a back pressure that is approximately 50 psi. But, some materials require higher settings: in some cases up to 300 psi. However, be cautious, because too high a back pressure will degrade any material. The material supplier is the best source of information regarding proper back pressure settings.

MOLD IMPROPER VENTING
Explanation: Most molds do not have adequate venting. Usually the moldmaker elects to ``wait and see'' where the venting needs to be located and then assigns an arbitrary size. While size is not necessarily as important as location, there is a tendency to use a minimum number of oversized vents rather than an adequate number of properly sized vents. If improper venting is used (or no venting), any trapped air or generated gases cannot escape. This will result in voids, bubbles, shorts, and burns. Solution: Vent the mold even before the first shot is taken by grinding thin (0.0005''-0.002'') pathways on the shutoff area of the cavity blocks. Vents should take up approximately 30% of the perimeter of the molded part. Vent the runner, too. Any air that is trapped in the runner will be pushed into the part. Another rule-of-thumb is to place a vent at every 1-inch dimension around the perimeter of the cavity. You cannot have too many vents.

SECTION THICKNESS TOO GREAT
Explanation: Most plastic parts are not of one continuous wall thickness. There is usually a need to change the wall thickness for such reasons as additional strength. Unfortunately, when that happens, there is a pressure loss in the thicker section as the molten material shrinks more there as it solidifies. The material pulls away from the cavity wall leaving a voided area. If the void is captured below the part surface, the void will appear as a bubble. Solution: A good rule-of-thumb is that any wall thickness should not exceed any other wall thickness by more than 25%. There will be little tendency for bubbles at that ratio. Metal inserts can be used to core out sections that do not meet that ratio, or ``overflow'' wells might be used to move the voided area off the primary part surface. However, the overflow would then need to be removed from the molded part.

IMPROPER RUNNERS OR GATES
Explanation: Runners or gates that are too small will restrict the molten material in the flow pattern and may cause non-packed parts. If gates are placed to flow material from a thin section into a thicker section, the restricted flow in the thin section will keep the thicker section from packing. Both of these conditions can result in a loss of filling pressure and cause sinks to evolve in the molded part. These sinks can take the shape of bubbles and voids if they are trapped within the part rather than on the surface. Solution: Gates should be of a depth that is equal to at least 50% of the wall they are placed at and should always be located to flow material from the thickest section to the thinnest. Runner diameters should be adequate to avoid a pressure drop as the material fills. Thus, the farther the travel, the larger the initial runner diameter should be. Gates and runners should be machined in the mold to be ``steel safe'' so they can be increased by removing metal. It is a good practice to place gates and runners in individual inserts so they can be easily replaced and/or reworked.

LOW MOLD TEMPERATURE
Explanation: A mold that is too cold for a specific resin or product design will not allow the molten material to fill and pack all of the mold properly before the resin starts to solidify. Any air or gases present in the plastic at the time will be trapped under the surface as bubbles. Solution: Raise the mold temperature in increments of 10 degrees F until the bubbles disappear. Allow 10 cycles for each 10-degree adjustment (up or down) for the mold temperature to stabilize.

MATERIAL EXCESSIVE MOISTURE
Explanation: Excessive moisture is one of the most frequent causes of bubbles. Moisture causes bubbles because the water droplets actually turn to pockets of steam when heated in the injection unit, causing voided areas between molecules. If the voided areas are trapped beneath the surface of the part they appear as bubbles. Solution: Although it is commonly understood that non-hygroscopic materials do not require drying, do not take chances. Dry all materials. It may be that fillers used in the material are hygroscopic and they will absorb moisture. Every plastic material requires specific drying conditions. And each material should be dried according to the material suppliers recommendations. The desired moisture content is between 1/10th of 1 percent and 1/20th of 1 percent by weight. This means the dry air being used to take moisture from the material should have a dew point of -20 to -40 degrees F.

OPERATOR
INCONSISTENT PROCESS CYCLE

Explanation: It is possible that the machine operator is the cause of delayed or inconsistent cycles. This will result in excessive residence time of the material in the injection barrel. If such a condition exists, materials may flow more easily and be injected too quickly, resulting in trapped air and gases being held in the resin and not being vented as required. The gases will form bubbles if held under the molded part surface. Solution: If possible, run the machine on automatic cycle, using the operator only to interrupt the cycle if an emergency occurs. Use a robot if an ``operator'' is really necessary. And, instruct all employees on the importance of maintaining consistent cycles.
[ ... ]

Saturday, October 17, 2009

Flow lines

Flow lines can be defined as linear grooving, or circular ripples, on the surface of a molded part that indicate the direction of material flow within the cavity of the mold.

MACHINE INADEQUATE INJECTION PRESSURE
Explanation: If too little injection pressure is used, the molten plastic will tend to cool down and solidify before the mold is packed out. If no packing is achieved, the flow pattern of the material will be imprinted on the surface of the part because not enough pressure was used to force the plastic against the steel of the mold and squeeze out the flow lines. Solution: Increasing the injection pressure will force the molten plastic against the mold cavity steel before the plastic solidifies, removing the flow lines and duplicating the cavity finish.

INADEQUATE RESIDENCE TIME
Explanation: Residence time is the amount of time that the plastic material spends being exposed to heating conditions in the injection barrel. The required time depends upon how much heat the material must absorb to be processed properly. Inadequate residence time results in underheated material. This will cause the material to be stiff when injected and it will not flow enough to fill the cavity before solidifying. The flow patterns will be imprinted on the surface of the molded part because they were not forced out in time. Solution: Optimize the residence time by making sure the mold is sized to the proper machine. Also, optimize the cycle time to ensure the material residence time is adequate to properly melt the plastic.

LOW BARREL TEMPERATURES
Explanation: Low barrel temperatures have the same effect as short residence time. The plastic material does not become fluid enough to fill the mold before solidifying and flow lines are imprinted on the part surface before they can be forced away. Solution: Increase the barrel temperature to that recommended by the material supplier. Adjust as needed to eliminate the flow lines. And, remember to keep the profile set so the material is heated from the rear towards the front of the barrel.

LOW NOZZLE TEMPERATURE
Explanation: As material is transported through the heating barrel, it is gradually brought up to the ideal processing temperature by absorbing heat from the heating bands and frictional heat, which is created by the shearing action of the rotating screw within the barrel. In the last heating zone, the material is exposed to is the nozzle. By the time the material gets to the nozzle, it should already be at ideal molding temperature and only a small amount of heat needs to be applied at this point to keep the resin flowing. If the nozzle is not hot enough, however, the material will begin to cool off too quickly as it leaves the barrel and the flow front will not be forced against the cavity steel to squeeze out the flow lines. Solution: Increase the nozzle temperature. As a rule-of-thumb, the nozzle temperature should be set at 10 degrees F higher than the setting for the front zone of the barrel. This helps compensate for heat loss due to metal-to-metal contact between the nozzle and the sprue bushing, and keeps the material hot enough to pack the mold, eliminating flow lines.

INADEQUATE CYCLE TIME
Explanation: If the overall cycle time is too short there is a good possibility that the material in the barrel cannot absorb enough heat before it is injected into the mold. This will cause premature solidification and flow lines may appear because the plastic was not packed enough (before solidifying) to squeeze them out. Solution: Increase the cycle time. The easiest change to make is to add time to the cooling portion of the cycle. That is when the plastic is absorbing the most heat in the barrel. Increase barrel temperatures 10 degrees F at a time, allowing 10 cycles between changes to re-stabilize the process.

MOLD
LOW MOLD TEMPERATURE

Explanation: Generally, a hot mold will allow a material to stay molten longer than a cold mold and cause the molecules to pack together properly before they solidify. This results in a dense part with no flow lines. If the mold is too cold, the molecules solidify before they are packed out and flow lines may result. Solution: Increase the mold temperature to the point that the material has proper flow and packs out the mold. Start with the material suppliers recommendations and adjust accordingly. Allow 10 cycles for every 10-degree change for the process to re-stabilize.

IMPROPER VENTING
Explanation: If there is not enough venting in the mold, the material will push into unvented areas and not compress against the mold steel because trapped gases are in the way. The material will actually ``stutter'' as it tries to force the gas out of the way, and will eventually solidify before packing can be achieved. The stutter marks will imprint on the part surface as flow lines. Solution: Vent the mold by grinding thin (0.0005''-0.002'') pathways on the shutoff area of the cavity blocks. The viscosity of the plastic being molded determines the depth of the vent. Stiff materials can utilize deeper vents but fluid materials require thinner vents. In either case, the concept is to remove air from the mold as fast as possible with as deep a gate as the material viscosity will allow. At least 30% of the parting line perimeter should be vented, but additional vents can be selectively placed for any area where flow lines appear.

SMALL GATES AND/OR RUNNERS
Explanation: Gates and/or runners that are too small will cause excessive restriction to the flow of the molten plastic. Many plastics will then begin to solidify before they fill the cavity. The result is an unpacked condition of the molecules and flow lines will not have a chance to be pressed out of the product surface. Solution: Examine the gates and runners to determine if any burrs or other obstructions exist. If possible, perform a computer analysis to determine the proper sizing and location of gates and runners. Ask the material supplier for data concerning gate and runner dimensioning for a specific material and flow rate.

MATERIAL
IMPROPER FLOW RATE

Explanation: Resin manufacturers supply specific formulations in a range of standard flow rates. Thin-walled products may require an easy flow material while thick-walled products can use a material that has a stiffer consistency. It is better to use the stiffest flow possible because it improves physical properties of the molded part. However, the stiff material will require higher injection pressures, which may blow the mold open and cause flash at the parting line. If an easy flow material is used, the physical properties will not be as great but, in addition, the material will flow into very thin areas and could create flash where the stiffer materials would not. Solution: Utilize a material that has the stiffest flow possible without causing non-fill. Contact the material supplier for help in deciding which flow rate should be used for a specific application.

INADEQUATE MOLDING LUBRICANT
Explanation: If a material is too stiff, it may solidify before packing the cavity and flow lines could exist. A lubricant can be added to improve the flow. If this is an external lubricant such as a mold release agent, it is difficult to control the amount of lubricant being used and the material may more fluid than required. The result could be flashing where the material would not do so without lubricant. Solution: If it is determined that a lubricant must be used, have the material manufacturer (or a compounder) add it directly to the pellets. That will result in more uniform blending and all the material will have the same flow rate.

OPERATOR
INCONSISTENT PROCESS CYCLE

Explanation: It is possible that the machine operator is the cause of delayed or inconsistent cycles. This will result in erratic heating of the material in the injection barrel. If such a condition exists, the colder particles will require higher injection pressures and may not fill the mold before they fully solidify. Flow lines will not be forced out in time. Solution: If possible, operate the machine on automatic cycle, using the operator only to interrupt the cycle if an emergency occurs. Use a robot if an ``operator'' is really necessary. And, instruct all employees on the importance of maintaining consistent cycles.
[ ... ]

Flash - Trouble Shooting

Flash can be defined as excess plastic material forced out of the cavity. This occurs at any point where two mold surfaces meet.

MACHINE EXCESSIVE RESIDENCE TIME IN BARREL
Explanation: Ideally, a shot size should equal 50% of the capacity of the barrel. That results in processing one cycle while preparing for the next cycle. However, this is a general statement because, depending on the material, the ratio can be as small as 20% for non-heat-sensitive materials such as polypropylene and up to 80% for heat-sensitive material such as PVC. As the ratio drops, the time of residence by the material in the barrel increases, and the material gets hotter. It will flow much easier at this point and enter areas where it could not at its normal viscosity. This results in a flashing condition in those areas. Solution: Strive for a 50% shot-to-barrel ratio. This is ideal but can go as low as 20% if the material is not too heat sensitive (like polypropylene) and up to 80% if the material is extremely heat sensitive (like PVC). It is not a good idea to empty the barrel every shot because more time will be required to bring the next mass of material up to proper heat and degradation may occur.

EXCESSIVE INJECTION PRESSURE
Explanation: If too much injection pressure is used, the clamp unit may not be able to hold the mold closed, especially on a machine with a hydraulic clamp. The mold will blow open and plastic material will leak out around the perimeter of the parting line. This leakage is called flash. It can also occur between any mating steel surfaces of the mold such as around ejector pins and slides. Major mold damage may occur as a result of flashing. Solution: Reducing the injection pressure reduces the tendency for the material to flash. In addition, make sure there is a properly raised shutoff land around the perimeter of the cavity. This will focus the clamp force and allow less clamp tonnage to be used. Without the shutoff land on the mold, the machine may not be able to generate enough clamp force to keep the mold closed under normal injection pressure.

HIGH BARREL TEMPERATURES
Explanation: High barrel temperatures have the same effect as long residence time. The plastic material becomes more fluid than it should and can enter small openings and crevices that it could not normally enter at the right viscosity. Solution: Reduce the barrel temperature to that recommended by the material supplier. And, remember to keep the profile set so the material is heated from the rear towards the front of the barrel.

EXCESSIVE CYCLE TIMES
Explanation: If the total cycle time is too long, there is a good possibility that the material is overheating in the barrel. This will cause the material to become too fluid and creates the potential for flashing in areas where it would not normally do so. Solution: Reduce the cycle time. Normally, this can come from the cooling portion of the cycle, but make sure the other functions are not excessive. For instance, injection hold time only needs to be long enough for the gate to freeze. After that, the hold pressure has no effect on the material in the cavity. So, the hold time is an area that should be considered for time reduction. Other functions should also be analyzed.

INADEQUATE CLAMP FORCE SETTING
Explanation: In both hydraulic and mechanical clamp machines, the clamp unit position must be set at the beginning of a molding run and readjusted as the run progresses, due to thermal expansion of the mold and machine. If this readjustment requirement is ignored, the clamp unit position may shift to the point of not fully closing the mold against the incoming injection pressure, and flashing will occur at the parting line. Solution: Size the mold to run in the proper machine. This is done by calculating the molding surface area (area of the part to be molded) and multiplying it by a factor of from 2 to 6. The higher number is used for stiff material (like polycarbonate) and the lower number for easy-flowing materials. That will give the number of tons needed to keep the mold closed, assuming there is a proper shutoff land on the mold. You must calculate the total area so include all cavities and the runner system.

MOLD IMPROPER PARTING LINE SEAL
Explanation: The parting line(s) of a mold must be machined to very close tolerances and parallelism to seal properly when the mold is clamped shut. If the parting line is not parallel, or is otherwise improperly machined or designed, molten plastic material will be forced out of the areas that are not closed tightly, and flash will form. Solution: Check for proper parting line seal. Make sure there is a shutoff land around the perimeter of the part. There should also be pads around the leader pins at the same height as the shutoff land to ensure parallelism when the mold is clamped. Use a dial indicator to check the flatness (or parallelism) of the parting line surfaces. They should be within 0.002'' (or less) over the entire parting line surface.

IMPROPER VENTING
Explanation: If vents are machined too deeply for a specific material the molten plastic can leak into the vents and become flash on the molded part. Solution: Vent the mold by grinding thin (0.0005''-0.002'') pathways on the shutoff area of the cavity blocks. The viscosity of the plastic being molded determines the depth of the vent. Stiff materials can utilize deeper vents but fluid materials require thinner vents. In either case, the concept is to remove air from the mold as fast as possible with as deep a gate as the material viscosity will allow.

INADEQUATE MOLD SUPPORTS
Explanation: Components called support pillars are used in the construction of a mold to provide extra compression support behind the cavity retainer plates on the ejector half of the mold. These pillars are used to fill in the vacant areas present in the U-shaped ejector housing and, when properly positioned, keep the mold from collapsing into the ejector housing during the injection phase of the molding cycle. If there are too few pillars or they are not positioned properly, the mold plates will deflect when injection pressure is applied and molten material will flow into the distorted areas, causing flash. Solution: Ensure that adequate support exists. An example of the importance of support pillars can be seen by the following: If a 12'' x 15'' mold base is used without any pillars, the maximum amount of projected part area that the mold could produce without plates deflecting would be 14 square inches. If four 1-1/4'' diameter support pillars are properly placed in the same mold, the allowed projected area would increase to 56 square inches, an improvement of 400%.

SPRUE BUSHING TOO LONG
Explanation: In a standard mold design, the sprue bushing extends through the A half of the mold until it touches the parting line at the ``B'' half. A runner is then machined across the face of the bushing to allow molten plastic to flow into the mold. If the sprue bushing is too long, it will keep the ``B'' half from closing tightly against the A half and a gap will form at the parting line. Molten material will leak into this gap causing flash. Solution: Reduce the length of the sprue bushing. This is easily done by grinding the face back enough to form a small pad of material to ensure the bushing does not touch against the ``B'' half. The thickness of the pad should be limited to approximately 1/32'' so it will not affect the overall cooling time of the cycle. This pad will also act as a cold well.

IMPROPER STACK-UP DIMENSIONS
Explanation: Unless a mold is cut-in-the-solid, there are many plates, blocks, and other components used in its construction. Each half of the mold must be constructed so that these items ``stack-up'' to specific dimensions. If this is not the case, these items will have gaps that the molten material can flow through and cause flash. Solution: A new mold should have the dimensions checked and adjusted even before the mold is placed in a press. As molds age, the components are exposed to compression and fatigue and may relax. They need to be adjusted periodically to ensure that the stack-up dimensions are still proper. Proper stack-up results in a preload of approximately 0.003'' on the cavity block faces.

MATERIAL IMPROPER FLOW RATE
Explanation: Resin manufacturers supply specific formulations in a range of standard flow rates. Thin-walled products may require an easy flow material while thick-walled products can use a material that has a stiffer consistency. It is better to use the stiffest flow possible because it improves physical properties of the molded part. However, the stiff material will require higher injection pressures, which may blow the mold open and cause flash at the parting line. If an easy flow material is used, the physical properties will not be as great. In addition, the material will flow into very thin areas and could create flash where the stiffer materials would not. Solution: Utilize a material that has the stiffest flow possible without causing non-fill. Contact the material supplier for help in deciding which flow rate should be used for a specific application.

EXCESSIVE MOLD LUBRICANT
Explanation: If a material is stiff, a lubricant can be added to improve the flow. If this is an external lubricant such as a mold release agent, it is difficult to control the amount of lubricant being used and the material may become more fluid than required. The result could be flashing where the material would not do so without lubricant. Solution: If it a lubricant must be used, have the material manufacturer (or a compounder) add it directly to the pellets. That will result in more uniform blending and all the material will have the same flow rate.

OPERATOR INCONSISTENT PROCESS CYCLE
Explanation: It is possible that the machine operator is the cause of delayed or inconsistent cycles. This will result in erratic heating of the material in the injection barrel. If such a condition exists, the material will not be of consistent flow rate and the easier flowing portions may cause flashing. Solution: If possible, run the machine on automatic cycle, using the operator only to interrupt the cycle if an emergency occurs. Use a robot if an ``operator'' is really necessary. And, instruct all employees on the importance of maintaining consistent cycles. in more uniform blending and all the material will have the same flow rate.

OPERATOR INCONSISTENT PROCESS CYCLE
Explanation: It is possible that the machine operator is the cause of delayed or inconsistent cycles. This will result in erratic heating of the material in the injection barrel. If such a condition exists, the material will not be of consistent flow rate and the easier flowing portions may cause flashing. Solution: If possible, run the machine on automatic cycle, using the operator only to interrupt the cycle if an emergency occurs. Use a robot if an ``operator'' is really necessary. And, instruct all employees on the importance of maintaining consistent cycles. in more uniform blending and all the material will have the same flow rate.
[ ... ]